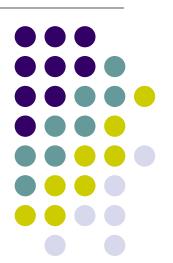
Badafiltre 2017

José María Toboso Casado Medicina Intensiva Hospital Universitari Germans Trias i Pujol

 Para el correcto funcionamiento de las TCRR hacen falta dos premisas básicas:

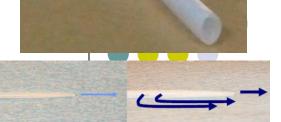

- Correcto acceso vascular catéter
- Adecuada dosificación del tratamiento

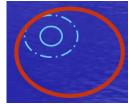
- Características ideales
 - Diámetro de 11-13 Fr
 - Longitud 10-20 cm
 - Adecuado flujo sanguíneo (100-400 ml/min)
 - Flexible pero rigidez suficiente para no acodarse ni colapsarse.
 - Adecuada biocompatibilidad.
 - Baja trombogenicidad.
 - Mínima irritación vascular mecánica.
 - Fácil y rápido de insertar.
 - Escaso riesgo de inserción y mantenimiento.
 - Cuidados de enfermería sencillos

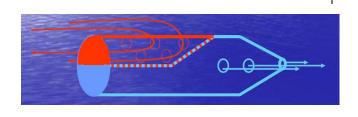
- Tipos de catéteres
 - Calibre
 - Morfología
 - Longitud
 - Material
- Localización del acceso vascular
- Complicaciones
- Técnicas de inserción

El rendimiento del catéter viene determinado por

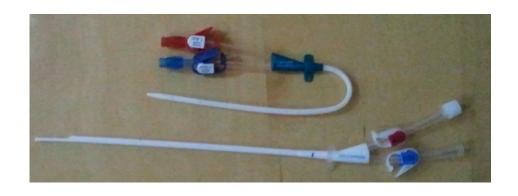
Tipo de material:


- Complianza y elastancia.
- Diámetro y longitud del catéter.
- Orificios distales: número y distribución.
- Resistencia al <u>flujo sanguíneo</u>: ley de Poiseuille
- Lugar del acceso vascular.


- Catéteres de doble luz para técnica vena-vena.
- Semirrígido, de poliuretano o silicona y termosensible.
- Geometría interna:
 - Concéntrica



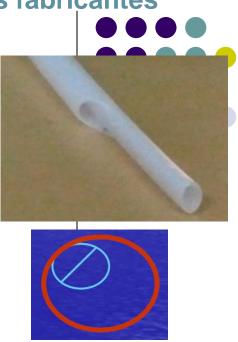
- Calibre
 - Catéter de doble luz
 - Diámetro
 - Ø 11-12 F : flujos < 250ml
 - Ø 13-14 F: para técnicas de alto flujo > 400 ml/min.

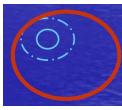


- Longitud
 - Las vías yugular, subclavia y axilar (sistema vena cava superior) han de quedar a 2 cm por encima de la aurícula derecha.
 - Yugular/Subclavia Derecha: 15-20cm
 - Yugular/ Subclavia Izquierda : 20-25 cm
 - La via femoral (sistema cava inferior) ha de llegar a vena cava inferior para evitar la recirculación
 - Femoral: 20-25 cm

- Flujo de sangre = $(\Pi \times \Delta P \times r^4) / (8 \times \eta \times L)$
 - Π: factor pi
 - \triangle P: Diferencia de presiones entre extremos
 - r:radio
 - L: Longitud
 - η :Viscositat de sang

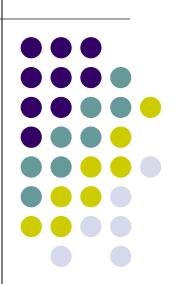

El diámetro del catéter es el principal determinante

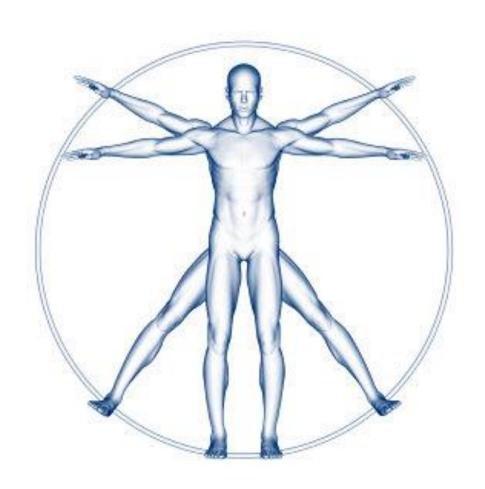




- ¿Qué limitaciones tenemos?
 - El tamaño F hace referencia al díametro externo del catéter, no al radio de las luces (depende del espesor de las paredes).
 - Las luces no son siempre circulares
 - Esta información no la suelen suministrar los fabricantes

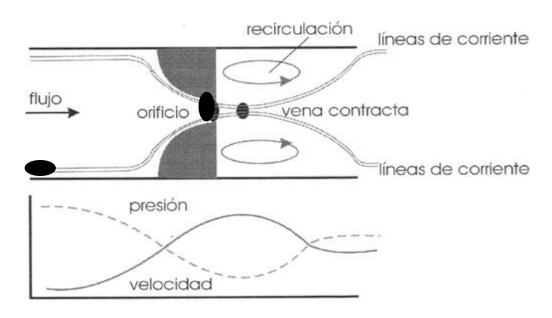
- ¿Cómo lo solucionamos?.¿Cómo comparamos catéteres?
- Radio equivalente
 - Re= √ (Volumen/∏L)

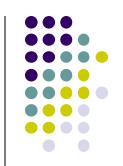

Sin llegar a efectuar los cálculos exactos, un catéter con un mayor volumen de cebado, tendrá mayor calibre interno a igualdad de longitud. Por lo tanto, tendrá menor resistencia y permitirá un flujo de sangre más elevado

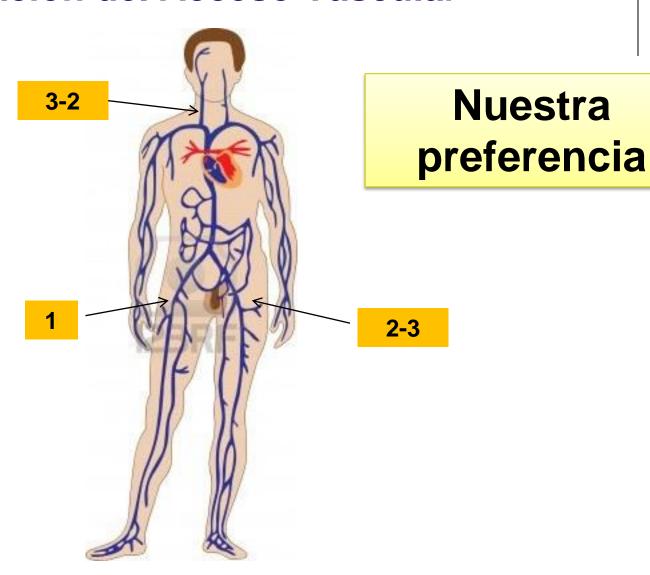

RECOMENDACIÓN PRÁCTICA:

No debemos fijarnos en los calibres que nos aporta el fabricante, sino en los volúmenes de cebado, que traducen un mayor calibre interno de cada luz.

- Las presiones en la línea arterial y venosa son indicativos de la permeabilidad del catéter
 - La presión de entrada no debe exceder los -300 mmHg para evitar riesgo de lesión vascular o hemólisis.
 - La presión "venosa" suele ser un 50% del flujo sanguíneo pautado




- Acceso venoso central:
 - Yugular
 - Femoral
 - Subclavia axilar
- Técnica Seldinger.
- La selección del territorio venoso dependerá de:
 - Contexto clínico.
 - Potenciales riesgos.
 - Experiencia clínica.

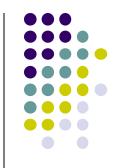


- Subclavia: mayor riesgo de trombosis y disfunción mecánica.
- Femoral: mayor recirculación, mayor infección?
- Yugular: problemas en el paciente crítico.

Catéteres y accesos vasculares en TCRR Complicaciones

Referidas a la canalización

Referidas a la permanencia

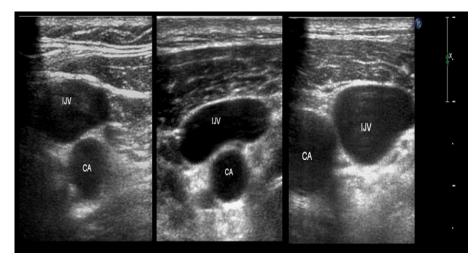

- Lesión vascular:
 - Hematoma.
 - Fístula arteriovenosa.
 - Pseudoaneurisma.
 - Disección vascular.
 - Hemotórax (subclavia/yugular)
 - Hemorragia retroperitoneal (femoral)
- Lesión de otro órgano
 - Neumotórax (subclavia/yugular)
 - Punción traqueal (yugular/subclavia)
 - Quilotórax
- Embolia aérea.
- Guía metálica
 - Arrítmia.
 - Falsa vía.
 - Pérdida en la circulación.
- Catéter:
 - Trayecto incorrecto
 - Rotura auricular.

- Trombosis del catéter.
- Malfuncionamiento:
 - Acodamiento.
 - Torsión.
 - Contacto con la pared.
 - Trombosis parcial.
 - Recirculación: especialmente en vías femorales < 20 cm.
- Trombosis venosa o arterial.
- Infección.
- Endocarditis.
- Estenosis venosa (subclavia)
- Lesión nerviosas.

Catéteres y accesos vasculares en TCRR Complicaciones: Cómo evitarlas

- Punción vascular por personal experimentado y/o guiada por ecografía
- Elegir bien la localización, evaluando riesgos y beneficios.
- Pruebas de coagulación.
- Catéter de poliuretano. De silicona si tunelizado.
- Técnica estéril.
- Uso exclusivo para TCRR
- Evitar femoral en pediatría
- Evitar subclavia en el adultos

- Evidencia bien demostrada por numerosos estudios.
- Mayor evidencia para el acceso yugular, seguido del femoral y menor para la subclavia.
- Experiencia del operador.
- Más éxito en el primer intento.
- Mayor éxito en la canalización.
- Menor índice de punción arterial.
- Menos complicaciones.
- Menor tiempo.
- Se puede emplear cuando el pulso es débil o ausente.
- Mejor confort para el paciente.
- Más económica.



- Permeabilidad del vaso.
- Variantes anatómica y anomalías vasculares.
- Permite elegir el mejor vaso

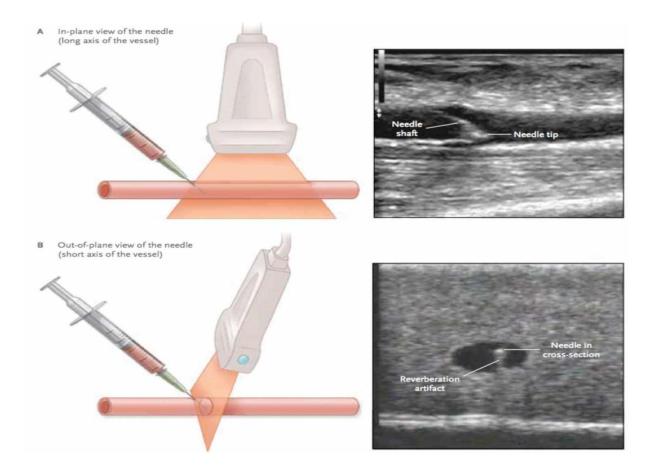
	<u> </u>	Position	range in %
		medial	0 - 5.5
		anterior	0 - 16 (54*)
		anterio-lateral	9 - 92
CA) #	far lateral	0 - 4
		lateral	0 - 84
()		posterior	0 - 9
medial	lateral	not visible/ thrombosed	0 - 18

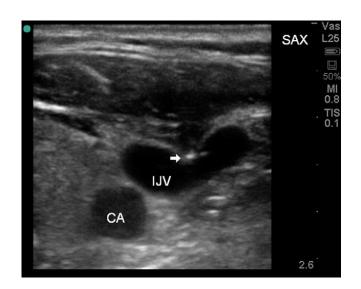
Journal of Cardiothoracic and Vascular Anesthesia, Vol xx, No x (Month), 2012: pp xxx

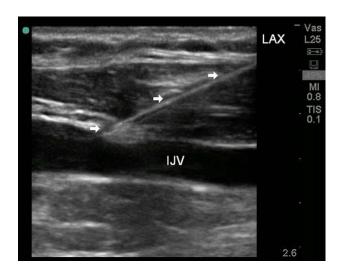
Table 4. Review of literature comparing previous studies using USG guidance for FV DC insertion

Ultrasound-Guided Femoral Dialysis Access Placement: A Single-Center Randomized Trial

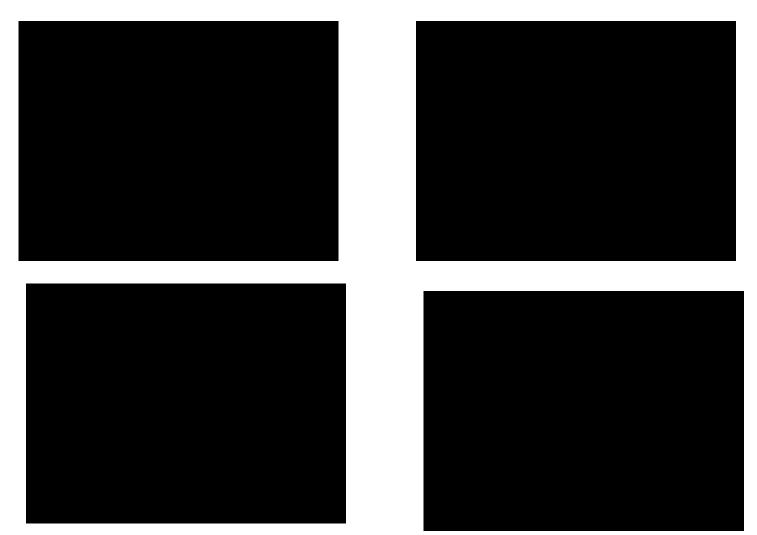
Mayoor V. Prabhu,* Deven Juneja,* Palepu B. Gopal,* Mohan Sathyanarayanan,* Sreepada Subhramanyam,* Sridhar Gandhe,* and K. Shivanand Nayak* Departments of *Nephrology and *Anesthesiology and Critical Care, Global Hospitals, Hyderabad, Andhra Pradesh, India


Author	Nature of Study	Sample Size (ALT/USG)	Results (ALT/USG)
Farrell (16)	Retrospective	16/14	Successful cannulation: $100\%/100\%$ Successful first attempt: $56.3\%/85.7\%$ Number of attempts: $1.5 \pm 0.6/1.1 \pm 0.4$ Femoral arterial puncture: $6.3\%/0\%$
Kwon (15)	Prospective with historical controls	38/28	Success rate: 89.5%/100% Successful first attempt: 55.3%/92.9% Femoral arterial puncture: 15.8%/7.1% Hematoma: 2.6%/0% Success rate: 87%/100%
Zollo (4)	Retrospective	230/38	Femoral arterial puncture: 11.2%/2.6% Hematoma: 3.9%/0% Success rate: 80%/98.2%
 This study	Prospective randomized controlled trial	55/55	Successful first attempt: $54.5\%/85.5\%$ Number of attempts: $1.5 \pm 0.6/1.2 \pm 0.4$ Femoral arterial puncture: $10.9\%/1.8\%$ Hematoma: $7.2\%/3.6\%$





Journal of Cardiothoracic and Vascular Anesthesia, Vol xx, No x (Month), 2012: pp xxx



International evidence-based recommendations on ultrasound-guided vascular access

Table 4 Recommendations on ultrasound vascular access in adults and cost-effectiveness

Ultrasound vascular access in adults					
Domain code	Suggested definition	Level of evidence	Degree of consensus	Strength of recommendation	
D4.SD2.S1	Ultrasound guidance should be routinely used for short-term central venous access in adults	A	Very good	Strong	
D4.SD2.S2	Ultrasound guidance should be routinely used for long-term central venous access in adults	A	Very good	Strong	
D4.SD2.S3	PICCs should be routinely inserted at mid arm level by ultrasound guidance using micro introducer technique	A	Very good	Strong	
D4.SD2.S4	Use of ultrasound guidance should be taken into consideration for any kind of peripheral intravenous line when difficult access is anticipated	В	Very good	Strong	
D4.SD2.S5	Ultrasound-guided arterial catheterization improves first-pass success and should be used routinely in adults	Α	Very good	Strong	
D4.SD2.S6	Ultrasound can accurately detect pneumothorax and should be routinely performed after central venous catheter cannulation when the pleura could have been damaged	В	Very good	Strong	
D4.SD2.S7	CEUS (contrast-enhanced ultrasound) is a valid method for detecting a central venous catheter tip in the right atrium	В	Very good	Strong	
	ness of the use of ultrasound for vascular cannulation		W	E+	
D5.S1-3	Ultrasound-guided vascular access has to be used because it results in clinical benefits and reduced overall costs of care makes it cost-effective	A	Very good	Strong	

1 11	111 1	1	
http://www.	kidnev-in	ternational	.ora
medant mann	mancy in	verrior eroritori	w. 9

© 2012 KDIGO

- 5.4.1: We suggest initiating RRT in patients with AKI via an uncuffed nontunneled dialysis catheter, rather than a tunneled catheter. (2D)
- 5.4.5: We suggest not using topical antibiotics over the skin insertion site of a nontunneled dialysis catheter in ICU patients with AKI requiring RRT. (2C)

- 5.4.2: When choosing a vein for insertion of a dialysis catheter in patients with AKI, consider these preferences (Not Graded):
 - · First choice: right jugular vein;
 - · Second choice: femoral vein;
 - Third choice: left jugular vein;
 - Last choice: subclavian vein with preference for the dominant side.

- 5.4.4: We recommend obtaining a chest radiograph promptly after placement and before first use of an internal jugular or subclavian dialysis catheter. (1B)
- 5.4.3: We recommend using ultrasound guidance for dialysis catheter insertion. (1A)
- 5.4.3: We recommend using ultrasound guidance for dialysis catheter insertion. (1A)
- 5.4.6: We suggest not using antibiotic locks for prevention of catheter-related infections of nontunneled dialysis catheters in AKI requiring RRT. (2C)

Catéteres y accesos vasculares en TCRR Conclusiones

- Un buen acceso vascular (vaso y catéter) es fundamental para un correcto funcionamiento de las TCRR.
 - Valorar material, calibre y longitudes adecuadas.
- La punción guiada por ecografía mejora el índice de éxito, disminuye las complicaciones y reduce costos.
- Las complicaciones más importantes son el mal funcionamiento, la infección y la trombosis.
- La recirculación se puede minimizar si el catéter es el adecuado y está correctamente colocado